Part Number Hot Search : 
MAZ7220 SR1640CS 89C51 XEB2203 34286G2 B82731H B4233 64300G
Product Description
Full Text Search
 

To Download ATTINY13APRE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Appendix A - ATtiny13A Specification at 105C
This document contains information specific to devices operating at temperatures up to 105C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com.
8-bit Microcontroller with 1K Bytes In-System Programmable Flash ATtiny13A Appendix A Preliminary
Rev. 8126A-Appendix A-AVR-07/10
1. Electrical Characteristics
1.1 Absolute Maximum Ratings*
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Operating Temperature.................................. -55C to +125C Storage Temperature ..................................... -65C to +150C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins ................................ 200.0 mA
1.2
DC Characteristics
DC Characteristics, TA = -40C to +105C
Parameter Input Low Voltage, Any Pin as I/O Input Low Voltage, RESET Pin as Reset (2) Input High Voltage, Any Pin as I/O Input High Voltage, RESET Pin as Reset (2) Output Low Voltage, Pins PB0 and PB1 (4) Condition VCC = 1.8 - 2.4V VCC = 2.4 - 5.5V VCC = 1.8 - 5.5V VCC = 1.8 - 2.4V VCC = 2.4 - 5.5V VCC = 1.8 - 5.5V IOL = 20 mA, VCC = 5V IOL = 10 mA, VCC = 3V IOL = 10 mA, VCC = 5V IOL = 5 mA, VCC = 3V IOH = -20 mA, VCC = 5V IOH = -10 mA, VCC = 3V IOH = -10 mA, VCC = 5V IOH = -5 mA, VCC = 3V VCC = 5.5V, pin low VCC = 5.5V, pin high VCC = 5.5V, input low VCC = 5.5V, input low 4.0 2.3 4.2 2.5 -1 -1 20 30 1 1 50 80 Min -0.5 -0.5 -0.5 0.7VCC (3) 0.6VCC (3) 0.9VCC (3) Typ Max 0.2VCC 0.3VCC
(1) (1)
Table 1-1.
Symbol
Units V V V V V V V V V V V V V V A A k k
VIL
0.2VCC (1) VCC + 0.5 VCC + 0.5 VCC + 0.5 0.8 0.6 0.8 0.6
VIH
VOL
Output Low Voltage, Pins PB2, PB3 and PB4 (4) Output High Voltage, Pins PB0 and PB1 (5)
VOH
Output High Voltage, Pins PB2, PB3 and PB4 (5) Input Leakage Current I/O Pin Input Leakage Current I/O Pin Pull-Up Resistor, I/O Pin Pull-Up Resistor, Reset Pin
ILIL ILIH RPU
2
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Table 1-1.
Symbol
DC Characteristics, TA = -40C to +105C (Continued)
Parameter Supply Current, Active Mode (6) Condition f = 1MHz, VCC = 2V f = 4MHz, VCC = 3V f = 8MHz, VCC = 5V f = 1MHz, VCC = 2V f = 4MHz, VCC = 3V f = 8MHz, VCC = 5V Supply Current, Power-Down Mode WDT enabled, VCC = 3V WDT disabled, VCC = 3V Min Typ 0.2 1.2 3.6 0.03 0.2 0.7 3.9 0.15 Max 0.35 1.8 6 0.2 1 3 10 2 Units mA mA mA mA mA mA A A
ICC
Supply Current, Idle Mode
Notes:
1. "Max" means the highest value where the pin is guaranteed to be read as low. 2. Not tested in production. 3. "Min" means the lowest value where the pin is guaranteed to be read as high. 4. Although each I/O port can under non-transient, steady state conditions sink more than the test conditions, the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 5. Although each I/O port can under non-transient, steady state conditions source more than the test conditions, the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 6. Measured with all I/O modules turned off (PRR = 0xFF).
1.3
Clock Characteristics
1.3.1 Accuracy of Calibrated Internal Oscillator It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 2-53 on page 32, Figure 2-54 on page 33, Figure 2-55 on page 33, and in Figure 2-56 on page 34. Table 1-2.
Calibration Method Factory Calibration User Calibration Notes:
Calibration Accuracy of Internal Oscillator
Target Frequency 4.8 / 9.6 MHz Fixed frequency within: 4 - 5 MHz / 8 - 10 MHz VCC 3V Fixed voltage within: 1.8V - 5.5V Temperature 25C Fixed temperature within: -40C to +105C Accuracy at given Voltage & Temperature(1) 10%
2%
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
3
8126A-Appendix A-AVR-07/10
1.4
1.4.1
System and Reset Characteristics
Enhanced Power-On Reset Table 1-3.
Symbol VPOR VPOA SRON Note:
Characteristics of Enhanced Power-On Reset. TA = -40 to +105C
Parameter Release threshold of power-on reset (2) Activation threshold of power-on reset Power-On Slope Rate
(3)
Min(1) 1.1 0.6 0.01
Typ(1) 1.4 1.3
Max(1) 1.6 1.6
Units V V V/ms
1. Values are guidelines only. 2. Threshold where device is released from reset when voltage is rising. 3. The Power-on Reset will not work unless the supply voltage has been below VPOA.
1.5
ADC Characteristics
ADC Characteristics, Single Ended Channels. TA = -40C to +105C
Parameter Resolution VREF = 4V, VCC = 4V, ADC clock = 200 kHz Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) VREF = 4V, VCC = 4V, ADC clock = 1 MHz VREF = 4V, VCC = 4V, ADC clock = 200 kHz, Noise Reduction Mode VREF = 4V, VCC = 4V, ADC clock = 1 MHz, Noise Reduction Mode Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Differential Non-linearity (DNL) Gain Error Offset Error Conversion Time Clock Frequency VIN Input Voltage Input Bandwidth VREF = 4V, VCC = 4V, ADC clock = 200 kHz VREF = 4V, VCC = 4V, ADC clock = 200 kHz VREF = 4V, VCC = 4V, ADC clock = 200 kHz VREF = 4V, VCC = 4V, ADC clock = 200 kHz Free Running Conversion 13 50 GND 38.5 1.0 1.1 100 1.2 3 4 Condition Min Typ Max 10 Units Bits LSB LSB
Table 1-4.
Symbol
2.5
LSB
3.5
LSB
1
LSB
0.5 3.5 2.5 260 1000 VREF
LSB LSB LSB s kHz V kHz V M
VINT RAIN
Internal Voltage Reference Analog Input Resistance
4
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
1.6 Analog Comparator Characteristics
Analog Comparator Characteristics, TA = -40C to +105C
Parameter Input Offset Voltage Input Leakage Current Analog Propagation Delay (from saturation to slight overdrive) tAPD Analog Propagation Delay (large step change) Digital Propagation Delay All parameters are based on simulation results. Condition VCC = 5V, VIN = VCC / 2 VCC = 5V, VIN = VCC / 2 VCC = 2.7V VCC = 4.0V VCC = 2.7V VCC = 4.0V VCC = 1.8V - 5.5 -50 750 500 100 75 1 2 CLK ns Min Typ < 10 Max 40 50 Units mV nA
Table 1-5.
Symbol VAIO ILAC
tDPD Note:
1.7
Serial Programming Characteristics
Table 1-6.
Symbol 1/tCLCL tCLCL 1/tCLCL tCLCL 1/tCLCL tCLCL tSHSL tSLSH tOVSH tSHOX Note:
Serial Programming Characteristics, TA = -40C to +105C
Parameter Oscillator Frequency Oscillator Period Oscillator Frequency Oscillator Period Oscillator Frequency Oscillator Period SCK Pulse Width High SCK Pulse Width Low MOSI Setup to SCK High MOSI Hold after SCK High VCC = 1.8 - 5.5V Condition VCC = 1.8 - 5.5V VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V Min 0 1000 0 104 0 50 2 tCLCL(1) 2 tCLCL
(1)
Typ
Max 1
Units MHz ns
9.6
MHz ns
20
MHz ns ns ns ns ns
tCLCL 2 tCLCL
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz
5
8126A-Appendix A-AVR-07/10
2. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. During characterisation devices are operated at frequencies higher than test limits but they are not guaranteed to function properly at frequencies higher than the ordering code indicates. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. A sine wave generator with rail-to-rail output is used as clock source but current consumption in Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:
I CP V CC x C L x f SW
where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of I/O pin.
2.1
Current Consumption in Active Mode
Figure 2-1. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 9.6 MHz
6
105 C 85 C 25 C -40 C
5
4 ICC (mA)
3
2
1
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
6
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-2. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 4.8 MHz
3.5
3
105 C 85 C 25 C -40 C
2.5
ICC (mA)
2
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-3.
Active Supply Current vs. VCC (Internal WDT Oscillator, 128 kHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 128 kHz
0.12
0.1
25 C -40 C 85 C 105 C
0.08 ICC (mA)
0.06
0.04
0.02
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
7
8126A-Appendix A-AVR-07/10
Figure 2-4.
Active Supply Current vs. VCC (32 kHz External Clock)
ACTIVE SUPPLY CURRENT vs. VCC
32 KHz EXTERNAL CLOCK, PRR = 0xFF
0.03
105 C 85 C 25 C -40 C
0.025
0.02 ICC (mA)
0.015
0.01
0.005
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
2.2
Current Consumption in Idle Mode
Figure 2-5. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 9.6 MHz
1.6 1.4 1.2 1 ICC (mA) 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
105 C 85 C 25 C -40 C
8
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-6. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 4.8 MHz
0.7
105 C 85 C
0.6
25 C -40 C
0.5
ICC (mA)
0.4
0.3
0.2
0.1
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-7.
Idle Supply Current vs. VCC (Internal Oscillator, 128 kHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 128 kHz
0.025
-40 C 25 C 105 C 85 C
0.02
0.015 ICC (mA) 0.01 0.005 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
9
8126A-Appendix A-AVR-07/10
Figure 2-8.
Idle Supply Current vs. VCC (32 kHz External Clock)
IDLE SUPPLY CURRENT vs. VCC
32 KHz EXTERNAL OSCILLATOR, PRR=0xFF
0.006
105 C
0.005
85 C 25 C -40 C
0.004 ICC (mA)
0.003
0.002
0.001
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
2.3
Current Consumption in Power-Down Mode
Figure 2-9. Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER DISABLED
1.6 1.4 1.2 1 ICC (uA) 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
105 C
85 C -40 C 25 C
10
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-10. Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER ENABLED
10
8
-40 C 105 C 25 C 85 C
6 ICC (uA) 4 2 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
2.4
Current Consumption of Peripheral Units
Figure 2-11. Brownout Detector Current vs. VCC
BROWNOUT DETECTOR CURRENT vs. VCC
40 35 30 25 ICC (uA) 20 15 10 5 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
105 C 85 C 25 C -40 C
11
8126A-Appendix A-AVR-07/10
Figure 2-12. ADC Current vs. VCC
ADC CURRENT vs. VCC
f = 1.0 MHz
400 350 300 250 ICC (uA) 200 150 100 50 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
105 C 85 C 25 C -40 C
Figure 2-13. Analog Comparator Current vs. VCC
ANALOG COMPARATOR CURRENT vs. VCC
f = 1.0 MHz
100 90 80 70 60 ICC (uA) 50 40 30 20 10 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
85 C 105 C -40 C 25 C
12
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-14. Programming Current vs. VCC
PROGRAMMING CURRENT vs. VCC
9000 8000 7000 6000 ICC (uA) 5000 4000 3000 2000 1000 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
25 C 85 C 105 C
-40 C
2.5
Pull-up Resistors
Figure 2-15. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
60
50
40 IOP (uA)
30
20
10
0 0 0.5 1 VOP (V) 1.5 2
25 C 85 C 105 C -40 C
13
8126A-Appendix A-AVR-07/10
Figure 2-16. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 3V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 3V
100 90 80 70 60 IOP (uA) 50 40 30 20 10 0 0 0,5 1 1,5 VOP (V) 2 2,5 3
25 C 85 C -40 C 105 C
3,5
Figure 2-17. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
160 140 120 100 IOP (uA) 80 60 40 20 0 0 1 2 3 VOP (V) 4 5 6
25 C 85 C 105 C -40 C
14
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
40
30
IRESET (uA)
20
10
25 C -40 C 85 C 105 C
0 0 0.5 1 VRESET (V) 1.5 2
Figure 2-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 3V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 3V
80 70 60 50 IRESET (uA) 40 30 20 10 0 0 0,5 1 1,5 VRESET (V) 2 2,5 3 3,5
25 C -40 C 85 C 105 C
15
8126A-Appendix A-AVR-07/10
Figure 2-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
140
120
100 IRESET (uA)
80
60
40
25 C -40 C 85 C 105 C
20
0 0 1 2 3 VRESET (V) 4 5 6
2.6
Output Driver Strength (Low Power Pins)
Figure 2-21. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
LOW POWER PINS, VCC = 1.8V
1.8 1.7 1.6 1.5 1.4
VOH (V)
1.3 1.2 1.1 1 0.9 0.8 0 0.5 1 1.5 2 2.5 IOH (mA) 3 3.5 4 4.5 5
85 C 105 C 25 C -40 C
16
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-22. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
LOW POWER PINS, VCC = 3V
3
2.9
2.8
VOH (V)
2.7
-40 C
2.6
2.5
25 C
2.4
85 C 105 C
2.3 0 1 2 3 4 5 IOH (mA) 6 7 8 9 10
Figure 2-23. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
LOW POWER PINS, VCC = 5V
5
4.8
4.6
VOH (V)
-40 C
4.4
25 C 85 C 105 C
4.2
4 0 2 4 6 8 10 IOH (mA) 12 14 16 18 20
17
8126A-Appendix A-AVR-07/10
Figure 2-24. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
LOW POWER PINS, VCC = 1.8V
2.5
105 C 85 C 25 C
2
1.5 VOL (V) 1
-40 C
0.5
0 0 0.5 1 1.5 2 2.5 IOL (mA) 3 3.5 4 4.5 5
Figure 2-25. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
LOW POWER PINS, VCC = 3V
1 0.9 0.8 0.7
25 C 105 C 85 C
0.6 VOL (V) 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 IOL (mA) 6 7 8 9 10
-40 C
18
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-26. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
LOW POWER PINS, VCC = 5V
1.4
105 C 85 C
1.2
1
25 C
VOL (V)
0.8
-40 C
0.6
0.4
0.2
0 0 2 4 6 8 10 IOL (mA) 12 14 16 18 20
2.7
Output Driver Strength (Regular Pins)
Figure 2-27. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 1.8V
1.8
1.7
1.6 VOH (V) 1.5
-40 C
1.4
25 C 85 C 105 C
1.3 0 0.5 1 1.5 2 2.5 IOH (mA) 3 3.5 4 4.5 5
19
8126A-Appendix A-AVR-07/10
Figure 2-28. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
3
2.9
2.8
VOH (V)
2.7
-40 C
25 C
2.6
85 C 105 C
2.5 0 1 2 3 4 5 IOH (mA) 6 7 8 9 10
Figure 2-29. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
5
4.8
VOH (V)
4.6
-40 C 25 C
4.4
85 C 105 C
4.2 0 2 4 6 8 10 IOH (mA) 12 14 16 18 20
20
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-30. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V
0.4
105 C 85 C
0.3
25 C
-40 C
VOL (V)
0.2
0.1
0 0 0.5 1 1.5 2 2.5 IOL (mA) 3 3.5 4 4.5 5
Figure 2-31. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
0.5
105 C
0.4
85 C
25 C
0.3 VOL (V)
-40 C
0.2
0.1
0 0 1 2 3 4 5 IOL (mA) 6 7 8 9 10
21
8126A-Appendix A-AVR-07/10
Figure 2-32. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
0.7
105 C 85 C
0.6
0.5
25 C -40 C
VOL (V)
0.4
0.3
0.2
0.1
0 0 2 4 6 8 10 IOL (mA) 12 14 16 18 20
Figure 2-33. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 1.8V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 1.8V
1,6
1,4
1,2
1
VOH (V)
0,8
0,6
0,4
0,2
-40 C 25 C 85 C 105 C
0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
IOH (mA)
22
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-34. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 3V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
4,5
4
3,5
3
VOH (V)
2,5
2
1,5
1
105 C 85 C 25 C -40 C
0,5
0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
IOH (mA)
Figure 2-35. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 5V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
4,5
4
3,5
3
-40 C 25 C 85 C 105 C
VOH (V)
2,5
2
1,5
1
0,5
0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
IOH (mA)
23
8126A-Appendix A-AVR-07/10
Figure 2-36. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 1.8V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V
1
0,8
0,6
VOL (V)
0,4
105 C 85 C 25 C
0,2
-40 C
0 0 0,1 0,2 0,3 0,4 0,5 0,6
IOL (mA)
Figure 2-37. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 3V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
1,6
1,4
105 C
1,2
85 C
1
VOL (V)
0,8
25 C
0,6
-40 C
0,4
0,2
0 0 0,5 1 1,5 2 2,5 3
IOL (mA)
24
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-38. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 5V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
1,6
1,4
1,2
1
105 C 85 C
VOL (V)
0,8
25 C -40 C
0,6
0,4
0,2
0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
IOL (mA)
2.8
Input Thresholds and Hysteresis (for I/O Ports)
Figure 2-39. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as '1')
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIH, I/O PIN READ AS '1'
3
105 C 85 C 25 C -40 C
2.5
2 Threshold (V)
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
25
8126A-Appendix A-AVR-07/10
Figure 2-40. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as '0')
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIL, I/O PIN READ AS '0'
2.5
105 C 85 C 25 C -40 C
2
Threshold (V)
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-41. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
I/O PIN INPUT HYSTERESIS vs. VCC
0.6
-40 C
0.5
Input Hysteresis (V)
0.4
25 C
0.3
85 C 105 C
0.2
0.1
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
26
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-42. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '1')
RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC
VIH, RESET READ AS '1'
3
105 C 85 C 25 C -40 C
2.5
2 Threshold (V)
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-43. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '0')
RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC
VIL, RESET READ AS '0'
2.5
105 C 85 C 25 C -40 C
2
Threshold (V)
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
27
8126A-Appendix A-AVR-07/10
Figure 2-44. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)
RESET PIN AS IO, INPUT HYSTERESIS vs. V CC
1 0.9 0.8 0.7 Input Hysteresis (V) 0.6 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 V CC (V) 4 4.5 5 5.5
105 C 85 C 25 C -40 C
2.9
BOD, Bandgap and Reset
Figure 2-45. BOD Thresholds vs. Temperature (BODLEVEL is 4.3V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 4.3V
4.4
4.38
RISING VCC
4.36 Threshold (V)
4.34
4.32
4.3
FALLING VCC
4.28
4.26 -40 -20 0 20 40 Temperature (C) 60 80 100 120
28
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-46. BOD Thresholds vs. Temperature (BODLEVEL is 2.7V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 2.7V
2.8
2.78
RISING VCC
2.76 Threshold (V)
2.74
2.72
FALLING VCC
2.7
2.68
2.66 -40 -20 0 20 40 Temperature (C) 60 80 100 120
Figure 2-47. BOD Thresholds vs. Temperature (BODLEVEL is 1.8V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 1.8V
1.85
1.84
RISING VCC
1.83 Threshold (V)
1.82
1.81
FALLING VCC
1.8
1.79
1.78 -40 -20 0 20 40 Temperature (C) 60 80 100 120
29
8126A-Appendix A-AVR-07/10
Figure 2-48. Bandgap Voltage vs. VCC
BANDGAP VOLTAGE vs. VCC
1.14
1.13
Bandgap Voltage (V)
1.12
1.11
25 C 85 C 105 C
1.1
-40 C
1.09
1.08 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-49. VIH: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '1')
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIH, PIN READ AS '1'
2.5
-40 C 25 C 85 C 105 C
2
Threshold (V)
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
30
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-50. VIH: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '0')
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIL, PIN READ AS '0'
2.5
105 C 85 C 25 C -40 C
2
Threshold (V)
1.5
1
0.5
0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-51. VIH-VIL: Reset Input Pin Hysteresis vs. VCC
RESET PIN INPUT HYSTERESIS vs. VCC
1 0.9 0.8 0.7 Input Hysteresis (V) 0.6 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
-40 C 25 C 85 C 105 C
31
8126A-Appendix A-AVR-07/10
Figure 2-52. Minimum Reset Pulse Width vs. VCC
MINIMUM RESET PULSE WIDTH vs. VCC
1800 1600 1400 1200 Pulsewidth (ns) 1000 800 600 400 200 0 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
105 C 85 C 25 C -40 C
2.10
Internal Oscillator Speed
Figure 2-53. Calibrated 9.6 MHz Oscillator Frequency vs. Temperature
CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. TEMPERATURE
10.2
10
5.5 V 4.5 V 2.7 V 1.8 V
Frequency (MHz)
9.8
9.6
9.4
9.2
9 -40 -20 0 20 40 Temperature 60 80 100 120
32
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-54. Calibrated 9.6 MHz Oscillator Frequency vs. VCC
CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
10.2
10
105 C
85 C
Frequency (MHz)
9.8
9.6
25 C
9.4
9.2
-40 C
9 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
Figure 2-55. Calibrated 4.8 MHz Oscillator Frequency vs. Temperature
CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. TEMPERATURE
5.2 5.1 5 Frequency (MHz) 4.9 4.8 4.7 4.6 4.5 4.4 4.3 -40 -20 0 20 40 Temperature 60 80 100 120
5.5 V 4.5 V 2.7 V 1.8 V
33
8126A-Appendix A-AVR-07/10
Figure 2-56. Calibrated 4.8 MHz Oscillator Frequency vs. VCC
CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
5.2 5.1 5
85 C
105 C
Frequency (MHz)
4.9 4.8 4.7 4.6 4.5 4.4 4.3 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
-40 C 25 C
Figure 2-57. 128 kHz Watchdog Oscillator Frequency vs. Temperature
WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE
116000
114000
112000 Frequency (kH)
110000
108000
1.8 V
106000
2.7 V
104000
4.5 V 5.5 V
102000 -40 -20 0 20 40 Temperature 60 80 100 120
34
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
Figure 2-58. 128 kHz Watchdog Oscillator Frequency vs. VCC
WATCHDOG OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
116000
114000
112000 Frequency (Hz)
-40 C 25 C
110000
108000
106000
85 C
104000
105 C
102000 1.5 2 2.5 3 3.5 VCC (V) 4 4.5 5 5.5
35
8126A-Appendix A-AVR-07/10
3. Ordering Information
Speed (MHz) Power Supply (V) Ordering Code(1) ATtiny13A-SN ATtiny13A-SNR ATtiny13A-SS7 ATtiny13A-SS7R Package(2) 8S2 8S2 8S1 8S1 Operation Range Industrial (-40C to +105C)
20
1.8 - 5.5
Notes:
1. Code indicators: - 7: NiPdAu lead finish - N: matte tin - R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
Package Type 8S2 8S1 8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC) 8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)
36
ATtiny13A
8126A-Appendix A-AVR-07/10
ATtiny13A
4. Revision History
Revision No. 8126A-Appendix A-AVR-07/10 History 8126-Appendix A rev A, initial revision
37
8126A-Appendix A-AVR-07/10
Headquarters
Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600
International
Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581
Product Contact
Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts
Literature Requests www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
(c) 2010 Atmel Corporation. All rights reserved. Atmel (R), logo and combinations thereof, AVR (R) and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
8126A-Appendix A-AVR-07/10


▲Up To Search▲   

 
Price & Availability of ATTINY13APRE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X